
The Deterministic Parallel Java Installation Manual

Version 1.0

University of Illinois at Urbana-Champaign

Revised July 2010

This document explains how to install Deterministic Parallel Java (DPJ), so you can use it to compile and run programs.

It also explains how to build DPJ from source code, in case you wish to study and/or modify the compiler internals. A

working knowledge of Java is required. Please also consult The Deterministic Parallel Java Tutorial and The Deterministic

Parallel Java Language Reference Manual for further details about the language.

The instructions in this document assume that you are working in a UNIX-like system (including Linux, Mac OS X,

etc.). Everything should work in Windows, but we have not tested DPJ on Windows systems. To follow the instructions as

stated here, you will have to install Cygwin on your Windows system to get a UNIX-like interface and tool set.

Contents

1 Before You Begin 2

1.1 Requirements . 2

1.2 Developer or User? . 2

1.2.1 Requirements for User Install . 2

1.2.2 Requirements for Developer Install . 2

1.3 What’s in the Release . 2

1.4 DPJ Resources . 3

1.5 DPJ License . 3

2 User Install 3

2.1 Installation and setup . 3

2.2 Compiling DPJ Programs . 4

2.2.1 Translating DPJ Source to Java Source . 4

2.2.2 Compiling Generated Java Source . 5

2.3 Running DPJ Programs . 5

3 Developer Install 6

3.1 Installation and setup . 6

3.2 Testing the Installation . 7

3.3 Browsing and Modifying the Compiler Code . 7

1

1 Before You Begin

Thank you for you interest in DPJ. This section covers the information you need to know before installing DPJ on your

system.

1.1 Requirements

DPJ is based on the Java language and javac compiler from Sun Microsystems. This manual assumes that the reader is

familiar with Java, including compiling and running Java programs. You will need at least a Java Development Environment

(JDK) to build and run DPJ codes. If you wish to work on the compiler sources you will need a Java Development Kit (JDK)

to build the compiler from source. We recommend the latest Sun JDK from java.sun.com.

1.2 Developer or User?

Instructions and requirements are slightly different depending on whether you want to use DPJ (user install) or develop DPJ

(developer install). A user install of DPJ includes the bytecode versions of the compiler and runtime, documentation, and

the DPJ source code for the benchmarks. A developer install of DPJ includes everything from the user install, and adds the

compiler and runtime sources and build environment.

Performing a user install is easier, but there are two reasons to do a developer install:

1. You are interested in reading or modifying the source code for the DPJ compiler and/or runtime; or

2. You want access to the latest updates to the DPJ compiler, without waiting for the next bytecode release.

1.2.1 Requirements for User Install

For a user install of DPJ, do the following:

1. Make sure you have a Java Devlopment Kit (JDK) installed. As of this writing we have tested with JDK 1.6.0 20.

2. Follow the instructions in § 2 to do the installation and start using DPJ.

1.2.2 Requirements for Developer Install

For a developer install of DPJ, do the following:

1. Make sure you have a JDK (at least Java 6) installed.

2. Make sure that you have a working installation of Apache ant, the Java build tool.

3. Make sure you have a working installation of git, the version control system.

http://git.com.

4. Make sure you have a working make.

5. The Eclipse IDE is invaluable for studying and modifying large Java programs, so we recommend installing it. See

http://www.eclipse.org

6. Follow the instructions in § 3 to do the installation. Then read §§ 2.2 and 2.3 to learn how to use DPJ.

1.3 What’s in the Release

The release directory structure contains the following directories:

• Documentation : Manuals and instructions for using and/or building DPJ.

• Implementation: The DPJ compiler and runtime.

• Benchmarks: Example code kernels and applications written for DPJ.

2

1.4 DPJ Resources

You should keep the following resources in mind as you work with DPJ:

1. The DPJ home page: dpj.cs.illinois.edu.

2. The DPJ public code repository: http://github.com/dpj/DPJ.git.

3. The DPJ development mailing list: dpjdev@cs.uiuc.edu. Joining the list allows you to follow major announce-

ments, news, and technical discussions regarding DPJ. To subscribe to the list, please visit

http://lists.cs.uiuc.edu/mailman/listinfo/dpjdev.

4. DPJ documentation is located in the Documentation directory of the DPJ release and is also available on the DPJ

web site at http://dpj.cs.illinois.edu/DPJ/Download.html.

The DPJ development team appreciates your feedback and questions. Please check the email list archives before sub-

mitting a question or bug report. We prefer using the list for submissions so that the entire DPJ community can benefit from

the growing knowledge base of questions and answers.

1.5 DPJ License

The DPJ software is subject to the following licenses:

• The DPJ compiler is based on Sun’s javac compiler and is covered by the GNU General Public License version 2.

• The programs in the Benchmarks/Applications directory are based on codes written by various third parties, and

are subject to their licenses.

• The rest of the code is by the University of Illinois and is released under the University of Illinois/NCSA Open Source

License.

See the file LICENSE.TXT in the top-level directory of the DPJ software for further license information.

2 User Install

This section explains how do a binary installation of DPJ, including the bytecode version of the DPJ compiler and runtime

and the source code for the DPJ benchmarks. If you install this way, then you can compile and run DPJ programs. However,

you will not have access to the source code for the DPJ compiler. (The runtime source code is included in the user install,

because you need that to compile against the runtime. See § 2.2.) If you want to study or modify the compiler and runtime

source code, then you should install from the git source base, as described in § 3.

2.1 Installation and setup

To install the bytecode version of the compiler and runtime, do the following:

1. Get the DPJ binary install tarball from http://dpj.cs.uiuc.edu.

2. Unpack the tarball:

tar -xvf dpjbin.tar

3. Set DPJ ROOT and your PATH:

setenv DPJ_ROOT ${HOME}/dpjbin

setenv PATH ${PATH}:${DPJ_ROOT}/Implementation/bin

This assumes that dpjbin is in your home directory; if not, make the necessary changes.

3

4. To check that you have a good installation, build the programs in the directory Benchmarks/Kernels:

cd dpjbin/Benchmarks/Kernels

make

5. Test the kernels:

make test-all

You are now ready to compile and run DPJ programs.

2.2 Compiling DPJ Programs

Compiling DPJ programs is a two-step process. First, you invoke the DPJ compiler dpjc to translate DPJ source to plain

Java source. Then you use an ordinary Java compiler (such as javac) to translate the Java source to bytecode that can be

run on a Java virtual machine.

The following subsections explain these compilation steps in detail. Further, the directory ${DPJ ROOT}/Benchmarks

contains a file Makefile.common that illustrates how to set up a build environment for managing these steps, includ-

ing automatic management of the subdirectories used to hold the translated Java and class files. You can also include the

Makefile.common in your own makefiles, getting the benefit of this setup with almost no effort. See ${DPJ ROOT}/Benchmarks/Kernels/Makefile

for an example.

2.2.1 Translating DPJ Source to Java Source

You invoke the DPJ compiler by saying dpjc on the command line, followed by some DPJ files to compile. The DPJ

compiler translates the DPJ source to Java source, so it’s best to direct the output of the DPJ compiler to a different directory,

to avoid name collisions. For example, the command sequence

mkdir java

dpjc -d java Foo.java Bar.java

translates the DPJ files Foo.java and Bar.java into the plain Java files Foo.java and Bar.java in the directory java.

Since dpjc is based on javac, you can use all the command-line options that javac supports. In addition, dpjc

supports the following options:

• -seq: If this flag is present, then the compiler translates the DPJ sources into sequential Java code. By default,

the compiler generates parallel code, using the ForkJoinTask library to express the parallelism implied by DPJ’s

cobegin and foreach constructs.

• -instrument: This option makes sense only with -seq. With this option turned on, the compiler adds instru-

mentation to the program, so that when run its performance characteristics can be analyzed. The instrumentation

consists of method calls into the API defined by the Instrument class in the package DPJRuntime, located in

Implementation/Runtime. See the DPJ runtime API documentation for further details.

• -count: When compiling the program, count the various kinds of DPJ annotations, and report the counts.

An important limitation of the DPJ compiler, as of DPJ v1.0, is that it has limited support for separate compilation. For

example, in ordinary Java, if Foo.java defines a class Foo, and Bar.java defines a class Bar that uses Foo, you can

compile Foo.java to Foo.class separately, and later compile Bar.java to Bar.class, as long as Foo.class is in the

class path specified on the compiler command line.

In DPJ, you can still do this if Foo.java is an ordinary Java file (i.e., it doesn’t have any DPJ annotations). However,

any source files containing DPJ annotations must be compiled together with code that depends on them. That is because

DPJ’s region and effect annotations are currently not represented in the bytecode (i.e., DPJ uses ordinary Java bytecode).

Therefore, the compiler needs all the source files containing the DPJ annotations. In particular, in the example given above,

if class Foo is defined with a region parameter, and you attempt to compile class Bar that uses Foo by linking against

Foo.class, then the compiler will generate an error, saying that Foo doesn’t take parameters. That’s because the region

parameter information is erased in the Foo.class bytecode. Instead, you need to compile Foo.java and Bar.java

together, so the compiler can see the parameter. The same limitation applies to the classes in the DPJ runtime; see § 7 of

The Deterministic Parallel Java Language Reference Manual for more details.

4

2.2.2 Compiling Generated Java Source

You can use any Java compiler to translate the generated Java source to bytecode. When you do this, you must put the DPJ

runtime classes in the class path. For example, the command sequence

mkdir classes

javac -cp ${DPJ ROOT}/Implementation/Runtime/classes -d classes java/*.java

compiles the translated Java files in directory java to bytecode, and puts the resulting class files in classes. The DPJ

tools include a command dpj-javac, which is a convenience wrapper for javac that includes the runtime classes in the

class path for you automatically. For example

mkdir classes

dpj-javac -d classes java/*.java

is equivalent to the above.

2.3 Running DPJ Programs

You run DPJ programs by saying dpj on the command line, followed by one or more Java classes to execute. The classes,

and any classes they depend on, must be in the class path. For example:

dpj -cp classes Foo

The options for setting the class path and the other runtime options are the same as for java. In fact, dpj just invokes the

ordinary java after adding the DPJ runtime classes to the class path, so you can use java to run DPJ programs if you want;

you just have to add the runtime classes manually. For example:

java -cp ${DPJ ROOT}/Implementation/Runtime/classes:classes Foo

The DPJ runtime has several configurable parameters. These are set in one of two ways. First, they can be passed as

command-line arguments to the program. The special DPJ command-line arguments must come first; they are processed

by the runtime and then stripped from the argument list, which is passed to the main program. For example, the following

invocation of the class Foo sets the DPJ foreach cutoff (explained below) to 100, then passes 42 and bar as the command-

line arguments to the program:

dpj -cp classes Foo --dpj-foreach-cutoff 100 42 bar

The following command-line options are processed specially by the DPJ runtime as stated above. Each of them must be

followed by a numeric argument; if not, an error is reported. If the options are not present, then the default is used as stated

below.

• --dpj-foreach-split n: Set the branching factor used to split a foreach loop to n. The loop is recursively split

into this many branches in each iteration, until the cutoff is reached (see below). The default is 2.

• --dpj-foreach-cutoff n: Set the minimum number of foreach iterations allocated to a single task to n. Beyond

this point, no more parallel splitting of a foreach loop occurs. The default is 128.

• --dpj-num-threads n: Set the number of worker threads used to run the program to n. The default is the number

of available processors given to the java virtual machine.

The second way to set the runtime parameters is to assign to them from within the program. This is useful if you want

different foreach loops in your program to use different parameters. See the runtime API documentation (available on the

DPJ web site) for information about how to do this.

5

3 Developer Install

3.1 Installation and setup

To install the DPJ compiler and runtime from source, do the following.

1. Check that your system meets the requirements in § 1.1.

2. Get the source code distribution. We recommend using Eclipse to check out the source code; that way you’ll have

access to all of Eclipse’s code browsing and editing features. Go to http://www.eclipse.org to get Eclipse. Then

you’ll need to install EGit (Git for Eclipse). This tutorial tells you how to do it:

http://www.vogella.de/articles/EGit/article.html

Then you can check out the DPJ source tree from inside Eclipse, again as explained in the tutorial. Use this as the

repository URL:

git://github.com/dpj/DPJ.git

The following steps assume you are calling the root of the working directory DPJ and putting it in your home directory.

If not, make the appropriate adjustments.

If you don’t want to use Eclipse, you can check out the DPJ source tree from the command line:

cd ˜

git clone git://github.com/dpj/DPJ.git DPJ

Again, make the appropriate adjustments if you are putting the root of the working directory somewhere else.

3. Set the DPJ ROOT environment variable. For example, if the root of your DPJ tree is DPJ in your home directory and

you are using the C shell, put this in your .cshrc file:

setenv DPJ_ROOT ˜/DPJ

Then do

source ˜/.cshrc

4. Tell ant to build the compiler, using your JDK:

cd ˜/DPJ/Implementation/Compiler/make

ant -Dboot.java.home=/usr/lib/jvm/java

If your JDK is not located at /usr/bin/jvm/java, then substitute the appropriate path.

5. A successful compiler build puts jar files for the compiler and related tools (such as javadoc) in

Implementation/Compiler/build.

The executable files dpjc and dpj in Implementation/bin invoke these jar files.

6. Add the DPJ compiler bin to your PATH:

setenv PATH ${PATH}:${DPJ_ROOT}/Implementation/bin/

7. Build the runtime classes located at ${DPJ ROOT}/Implementation/Runtime. You can expect some warnings.

cd ../../Runtime/

make

6

8. You can now build and run the kernels:

cd ${DPJ_ROOT}/Benchmarks/Kernels

make

9. Then run all the kernel tests:

make test-all

3.2 Testing the Installation

1. JUnit 4 tests are in ${DPJ ROOT}/Implementation/Compiler/test/dpj-junit-tests. The corresponding

DPJ source files are in test/dpj-programs.

2. The JUnit tests are designed to be run from within Eclipse, by running the launcher file

test/dpj-junit-tests/dpj-junit-tests.launch.

If the JUnit tests fail with a MethodNotFound error, it is probably because the classpath is wrong. Many of the javac

classes are included in the system library (rt.jar), and so the DPJ versions must precede the system library in the

classpath. If you use the launcher, this error should not happen.

3.3 Browsing and Modifying the Compiler Code

After an initial ant build, DPJ javac will build automatically in Eclipse (albeit to a bin/ directory instead of build/).

However, if any of the resource bundles are changed (be sure to change the .properties files in

src/share/classes/com/sun/tools/javac/resources

and not the generated .java files!), the compiler must be re-built using the ant script.

The ant script bootstraps the compiler. So if there is an internal compiler error, it is due to a fault in the DPJ compiler.

Note also that the compiler may compile successfully in Eclipse but fail when it is bootstrapped in the ant script due to

differences between pure Java and DPJ (or an error in the DPJ compiler). In particular, note that the following keywords are

reserved in DPJ and therefore may not be used as variable names (in any DPJ program, including the DPJ compiler):

• under

• region

• reads

• writes

7

	Before You Begin
	Requirements
	Developer or User?
	Requirements for User Install
	Requirements for Developer Install

	What's in the Release
	DPJ Resources
	DPJ License

	User Install
	Installation and setup
	Compiling DPJ Programs
	Translating DPJ Source to Java Source
	Compiling Generated Java Source

	Running DPJ Programs

	Developer Install
	Installation and setup
	Testing the Installation
	Browsing and Modifying the Compiler Code

